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Rosetta is a magnetically dirty

spacecraft, which makes the

calibration of the magnetic field

challenging

→ Magnetic field components are

shifted from their actual values

In case of cavity:
1) short drop-outs in the 150-200 eV 

component of the electron spectrum, 

longer 100 eV attenuation events

2) No or very small fluctuations around a 

constant value for all three magnetic field

components

3) Close events have the same residual 

field values.

 We found 127 cavity events in July
and August of 2015 using this criteria

Particle signatures of the diamagnetic cavity
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Drop-outs in some components of the

electron spectrum

→ Indicates diamagnetic cavity

(Nemeth et al., 2016)



Electron spectrum
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• 150-200 eV: drops abruptly 

when the spacecraft enters

the cavity

• 100 eV: Drop-outs indicate

that we are close to the cavity, 

but not necessarily inside it

→ The electron population is tied 

to the magnetic field lines

• They are forced out from

the cavity together with

the field lines

• Probable source: Young, 10-15 eV photoelectrons are picked up by the solar wind further away from

the comet

• Migrating towards the comet they undergo a betatron-like acceleration

→Can be accelerated by a factor of 10-15
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Electron density
• Inside the cavity:

 Calm, low

 ~500 cm-3 – 1000 cm-3

 Depends on: local neutral density

→ Source of the ionization

• At the cavity border:

 Sudden, short increase

 ~2000 cm-3 – 6000 cm-3

→ Electrons originated from the

comet are grappled by the

magnetic field lines at the

cavity boundary
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Ion spectrum

• Small increase of the counts at the

cavity border

• Accompanied with a negative

spacecraft potential

• In more dense plasmas (eg. 

Cavity boundary)

• Accelerates cold ions into the

range of the sensor

(Nemeth et al., 2016)



Modeling the size of the diamagnetic cavity
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where 𝑐 = 7.08 × 10−18 km nT s3/4

𝒑𝒔𝒘 is the solar wind dynamic pressure
𝑩𝟎 is the maximum of the magnetic field in the
pile-up region around the comet
Q is the outgassing rate

=> 𝒓𝒄𝒔 is the size of the diamagnetic cavity

(Cravens, 1986)
Q



Model inputs
Q outgassing rate:

• Local (ROSINA density measurements)

• Global (Hansen et al., 2016, derived from the above, but rotational and latitudinal effects removed)

psw solar wind dynamic pressure: propagated from WIND, ACE, STEREO-A, OMNI mSWiM

B0 maxima: Rosetta magnetic field measurements

7(Timar et al., MNRAS in press)



Methods
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1. Using propagated solar wind pressure:

The boundary distance can be calculated using propagated solar 
wind dynamic pressure (psw) from various solar wind models:

𝑟𝑐𝑠 = c
𝑄
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(Timar et al., MNRAS in press)



3. Scaled Rosetta magnetic field:

• The exact value of the boundary distance can be calculated from the spacecraft’s position (r) and the 
magnetic field value (B) measured in that position, according to Cravens ’86:

𝐵(𝑟) = 𝐵0 1 −
𝑟𝑐𝑠
2

𝑟2

• can only be applied outside the cavity, where B≠0, but can be used to test the accuracy of the other methods.

Methods

2. Peak-selection (Madanian et al., 2016):

• The maximum of the magnetic field in the pile-up region (B0) can be estimated by searching for local peaks in the 
Rosetta magnetic field data

• Calculate the boundary distance using:

• We will find cavity events where this maximum is relatively low (which means low solar wind pressure and 
extended cavity)
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Methods
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Peak-selection & Scaled B methods:

(Timar et al., MNRAS in press)



Global production rate

• The averaged, global outgassing rate drives the size of the cavity!
• local density is not sufficient to explain the extent of the cavity

• magnetic tension is probably able to suppress local density variations 

Boundary dynamics

• The solar wind pressure is changing rapidly
• causing fast changes in the boundary distance

• explains the short duration of the cavity crossings

• Slowly changing cometary activity 
• gradual increase or decrease of the rcs evolving through multiple events

11
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(Timar et al., 
MNRAS in press)



Estimating solar wind pressure from RPC MAG 
measurements

13

𝑝𝑠𝑤 =
𝐵0
2

2𝜇0
• We’ve seen that B0 can be 

approximated from Rosetta
magnetic field measurements, 
when we are close to the
cavity boundary

• 𝐵(𝑟) = 𝐵0 1 −
𝑟𝑐𝑠
2

𝑟2

• This relationship holds for 
several months spanning from 
June 2015 to January 2016

(Timar et al. EPSC2017 poster, paper in prep.)



Rosetta pressure proxy
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• The results were compared to OMNI and ACE data propagated using different methods; the 
curves are very similar, they agree with our method as far as the accuracy of the propagation 
based predictions allow
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Rosetta pressure proxy

CME at 67P

(Timar et al. EPSC2017 poster, paper in prep.)



Conclusions

• Drop outs in the 100 eV and 150-200 eV component of the electron spectrum
near the cavity
• Particle based method to detect longer cavity events

• Increased counts in the ion spectrum and increased electron density at the
cavity boundary

• We can predict the size of a global, connected diamagnetic cavity (except before
June 2015)
• The global outgassing rate defines the position of the boundary, local pressure variations are 

suppressed
• The fast alternation of magnetized and field-free regions can be explained by the rapid 

changes in the solar wind pressure
• Using this method we can identify previously undiscovered cavity events

• From the Rosetta magnetic field measurements deep inside the cometary 
magnetosphere we can deduce the pressure of the solar wind around the comet


