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General description
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The Mars’ plasma environment

. e e Solarwind
Since Mars does not have a global intrinsic -

magnetic field, the Mars’ upper atmosphere and
lonosphere are the main obstacles that the solar
wind finds at Mars.

Therefore, the “strength” of this obstacle is a

determining factor to assess the behaviour of the
Martian plasma with solar wind variability.
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Long-term variabllity
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Solar cycle EUV and X-rays

EUV and soft X-ray play the major role in the formation of the ionosphere of
Mars, and therefore, in the “strength” of the Martian obstacle to the solar wind

.
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Solar cycle variations in the Martian ionosphere

Total Electron Content (TEC) of the full atmosphere gives us an idea of the strength of the Martian plasma obstacle that acts
to deflect the solar wind flow
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lonospheric modelling: TRANSPLANET

In order to study the space weather variability
effect on the ionosphere of Mars, we have
used the IPIM model in several studies

http://transplanet.irap.omp.eu/
IPIM is a one dimensional coupled kinetical
model, which has been built in a modular
way, leading to a core model that is

independent from the planet.

The interment interface is very convenient
because the model is very complex to run.
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WELCOME TO TRANSPLANET

The synopsis of IPIM ionosphere model (Marchaudon and Blelly, 2015) is presented in figure 1. This model is a legacy of
TRANSCAR and TRANSMARS family model (Blelly et al., 1995, Diloy et al.. 1996, Blelly et al., 2005) with substantial improvements,
the first being that the transport equations for the ionized species are based on a 16 moment approximation (Blelly and Schunk,
1993). The model is basically a one dimensional model, which has been built in a modular way, leading to a core model that is
independent from the planet. This core model corresponds to the part delimited by the red line in figure 1. In order to be able to run,

it requires some inputs, which are related to the characteristics of the planet.
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Case study I: solar cycle effect

Since the ionosphere was much weaker during the low solar activity phase, the thermal pressure of the ionosphere was
very close to the magnitude of the dynamic pressure of the solar wind.

To evaluate the effect of this pressure relationship on the ionosphere, we selected profiles with similar conditions from 2
Mars Express orbits, a case study and made an ionospheric simulation.

Date: 2007-04-16; Time: 12:54:12; Orbit 4210
; Lat: -32.547 deg; Long.: 286.536 deg; Alt: 315.221 km
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Case study I: solar cycle effect e
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We made a numerical simulation with the IPIM
model to analyze the shape of the profiles with
similar conditions, but at different phases of the
solar cycle.
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Mars, which is mainly produced by a small and
constant induced magnetic field in the dayside
lonosphere of Mars.
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Short-term variability (1)
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Case study |l: effect of a solar event

It is well-known that the presence of an induced magnetic field in the top of the ionosphere creates a large
reduction on the topside electron density profile. However, at Mars (before MAVEN), this was not possible to

directly assess due to the lack of magnetometer on board Mars Express.

¥ For the Mars case
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Case study II: effect of a solar event

Date: 2006-06-20; Time: 21:46:36; Orbit: 3140
Lat.: 12,686 deg; Long.: 65.104 deg; Alt.: 307.446 km

Ne profile frorﬁ MEX. orbit 3140
Ne profile from MEX orbit 3184 |

We selected 5 consecutive Mars Express
orbits over the same region of the planet,
from June 2006 in which the radar
MARSIS was working.

Delay [ms]
Spectral Density [log vim? Hz"]

3 of the orbits were affected by a solar
, event (possible CIR), and MARSIS
Date: 2006-07-03; Time: 05:24:12; Orbit: 3184 recorded some induced magnetic field at
the spacecratft altitude.

Lat.: 20.819 deg; Long.: 68.747 deg; Alt.: 314.833 km

As a result, the vertical electron density
profiles during the solar event, were
notably affected.

Delay [ms]

Frequency [MHz] ) Ramirez-Nicolas et al., PSS, 2016



Case study II: effect of a solar event
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Short-term variability (1)
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ICMESs effect at Mars. (I) propagation

To evaluate the reaction of the Mars’ plasma system, a good knowledge of the solar event that hit the
planet is absolutely needed. Solar wind propagation modelling is many times a crucial factor.
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= Introduction to the CDPP Propagation Tool (13M) N
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solar storms, streams and energetic particles in the heliosphere.This tool was defined and developed by a
IRAP and IAS staff through a subcontract with GFI informatique and CNES financial support. It follows
on from and is complementary to the propagation tool developed by the FP7 HELIO project. pp  mm =

Tutorials : video (mpeq files)

The propagation tool allows users:

m Introduction to the CDPP Propagation Tool (461)
n Description of the propagation tool main
interface (47M)

m to propagate solar eruptions (CMEs) radially sunward or anti-sunward (Radial Propagation),
n to propagate corotating structures (CIRs) in the heliosphere (Corotation),
» to propagate selar energetic particles along magnetic fields lines sunward or anti-sunward (SEP Propagation),

http://propagationtool.cdpp.eu/

bscmdrl@le.ac.uk



ICMESs effect at Mars. (I) propagation

We studied the propagation of a very large ICME that was ejected on October 14, 2014 and hit several solar
system bodies. One of the solar wind propagation models that we used was the CDPP propagation tool.
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ICMESs effect at Mars

Scene begin = 2014/10/14 00:00:00
Scene end = 2014/11/13 13:00:00
Scene time = 2014/10/14 00:00:00
Frame = J2000

Center = Sun

Saturn
e

Z
Y

/‘
CNES - IRAP - GFI informatiqu

bscmdrl@le.ac.uk

. (I) propagation

ol o

s
S? = .'t""“ A h

013 AM@Biding Spring)
i
Rosettz

T

Witasse et al., JGR, 2017

http://3dview.irap.omp.eu/



ICMESs effect at Mars. (I) propagation

Table 1. ICME Propagation Timeline

Date and Time (UT)

Heliocentric Distance (AU)

STEREO-A

The CDPP predictions were
very accurate and help us,
together with the
observations and a WSA-
ENLIL+Cone solar wind
simulation, to constrain the
velocity, position and
structure of the ICME in its
journey throughout the full
solar system. >aturn

Comet 67P

New Horizons

Witasse et al., JGR, 2017

Voyager 2

Launch of the CME

Putative arrival time from Venus Express housekeeping data
CME associated shock/compression from WSA-ENLIL + Cone
CDPP propagation tool prediction

STEREO-A shock detection
CME associated shock/compression from WSA-ENLIL + Cone
CDPP propagation tool prediction

CME detection with Mars Express ASPERA data

CME detection with MAVEN magnetometer data

FD onset with MSL RAD data (Plastic detector)

FD onset with HEND Mars Odyssey (DHD medium detector)
CME associated shock/compression from WSA-ENLIL + Cone
CDPP propagation tool prediction

CME detection with Rosetta magnetometer data

CME detection with Rosetta ion data (solar wind proton energy)
FD onset with Rosetta SREM data (Channel 6)

CME associated shock/compression from WSA-ENLIL + Cone
CDPP propagation tool prediction

CME detection with Cassini-Huygens magnetometer data
FD onset with Cassini-Huygens MIMI data

CME associated shock/compression from WSA-ENLIL D Cone
CDPP propagation tool prediction

Time window based on solar wind speed (see text)

Possible detection of the ICME in the SWAP data

CME associated shock/compression from WSA-ENLIL + Cone, prediction
for the distance of NH (see text)

CDPP propagation tool prediction for 31.5 AU

Possible MIR detection in the dynamic pressure and GCR data sets

14 Oct 2014 T18:30

16 Oct 2014 T07:19
16 Oct 2014 TOS:00
16 Oct 2014 T07:12

16 Oct 2014 T20:00
17 Oct 2014 T00:00
16 Oct 2014 T20:57

17 Oct 2014 T15:45-22:50

17 Oct 2014 T22:53
17 Oct 2014 T20:09
17 Oct 2014 T18:15
18 Oct 2014 TO0:00
17 Oct 2014 T22:51

22 0ct 2014 T16:30
22 0ct 2014 T17:24
22 Oct 2014 T14:24
22 Oct 2014 TO9:30
22 Oct 2014 T17:00

12 Nov 2014 T18:55
12 Nov 2014 T17:30
15 Nov 2014 T12:00
12 Nov 2014 T16:09

18 Jan to 14 Feb 2015

21-29 Jan 2015
8 Feb 2015

24 Jan 2015

Late Mar 2016
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ICMEs effect at Mars. (Il) solar cycle effect

Two Interplanetary Coronal Mass ejections (ICME) have been selected, each one from the extremes of the solar

cycle. In both cases, Mars Express was transiting the dayside (SZA=40-70 deg) and in the North hemisphere
(no crustal fields).

More than double difference in TEC
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ICMEs effect at Mars. (1) HIGH solar activity

T T T T
Mars Express

For this event,

there were not any
satellites between the
Sun and Mars.
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ICMEs effect at Mars. (II) LOW solar activity
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Data processing
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Cold plasma and induced magnetic field
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Cold plasma and induced magnetic field at MEX

ICME:

a clear compression of
the magnetosheath-
lonosphere system is
found.

The ionosphere is found
to be more compressed
and with a larger induced
magnetic field.

Fast stream:

The plasma system is
recovered after few MEX
orbits (~15h)

No apparent effect on the
system

bscmdrl@le.ac.uk
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To conclude....

Lots of science works can be done (and usually in a much easier way) thanks to the several
tools developed at IRAP. | remark:

(1) AMDA is a great tool that helps a lot with the data processing.

From the Mars perspective, | think the dataset is very complete, although

from other bodies perspective, | think it would be good to have the full
Rosetta RPC data set.

(2) The propagation tool is also great and works quite well, even when it was
tested in a difficult and extreme case for the tool as in Witasse et al., 2017.

My suggestion would be to add New Horizons, and to get as output the
speed as a function of the heliocentric distance.

(3) IPIM interface is very convenient because the model is quite complex to run.

(4) 3D view is also an interesting tool to help to visualize events.
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Thank you very much for
your attention!!

Mars view from Mars Express
Credits: ESA/DLR/FU Berlin (G. Neukum)
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