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SIR/CIR/CME — a quick intro
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Image from SOHO

* SIR - fast solar wind catches up with slow solar
wind and forms compression/rarefaction regions

* The interaction region forms a spiral arc in
interplanetary space and rotates with the Sun.

* CIR —if the SIR is a continuous over more than
one solar rotation its called a CIR (I think,
definitions seems to vary)

* Coronal mass ejections are more violent
outburst of solar plasma, which propagate
radialy outward and occasionally impact on
planets and other solar system bodies

*Both types present major disturbances in the
solar wind density, magnetic field, temperature
etc, which causes disturbances to the solar wind-
planet interaction
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Observations of CIRs at Mars

* Fach major CIR observed by ACE at Earth can also observed by MEX at
Mars during 2007-2008
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Superposed epoch analysis of 41
events

Automatic search for CIRs in
ACE data:

* Gradual increase in velocity
over 24 hours

* Sudden increase in | B |of
factor 1.5

* 41 CIRs/CMEs detected in
2007-08

* They appear as pressure
pulses

Epoch time [days]



Calculate arrival times at Mars

ACE data ,., Mars Express data
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lonospheric escape during CIR at Mars
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Observations of CIRs/CMEs at Venus

CIRs/CMEs that are observed at ACE are also easily tracked to Venus.
From May 2006- Jan 2010 we find 147 events.
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lonospheric escape during CIRs at Venus
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Related work

Futaana et al., 2008, estimated
that heavy ion outflow from
Mars and Venus increased by a
factor of ~5-10, when a burst of
solar energetic particles impacted
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Related work

Outward Heavy lon Flux Inward Heavy lon Flux
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Luhmann et al., 2008, showed
that the flux of planetary ions
from Venus increased by a

tactor 10 when CMEs impact
the planet, but only in "4 cases

McEnulty et al., 2010 showed
that planetary ions from Venus

are picked up and accelerated by}
the convective electric field to a

greater extent when CMEs
impact.

blue) are shown in comparison to median and first/fourth quartile ion fluxes measured over a ~4 month
=0 period (gray traces). Fluxes are evaluated in a spherical shell around Mars from 1.25 to 145 R, (radius of
220 Mars), and the position of MAVEN is rotated into a coordinate system aligned with the solar wind electric
field. During the ICME, strong outward flux is observed in regions of typically inward flow.

_______________________________________________________________________________________ ]
Table 1. lon loss rates calculated by the MHD model for the three cases corresponding to
three different stages of the ICME. Psw is the solar-wind pressure for the model run.

| ~VswxB . Psw(nPa) O (s} 07 (s) CO*(s) Total(s?)  Total (kg/s)

Case 1 0.9 6.4 x 1023 77 x10%® 49 x 102 146 x 1024 006

134 196 x 10 132x10®° 63x10° 334 x10% 127

3 Jakosky et al., 2015 showed as
a first results from the
MAVEN mission that the

2 escape rate increased during a
CME impact
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Escape Rate (s-1)

The influence of dynamic pressure increase

High Pdyn events
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The escape rate from Mars
increased with increasing solar
wind dynamic pressure [Lundin et
L al., 2008; Nilsson et al., 2010] and
bR AR Rk EUV flux [Lundin et al., 2008].
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Another mechanism — magnetic reconnection
during IMF rotations

Before CIRs

(@) 2 (e) IMF jy
Across each CIR the IMF changes = ;
polarity, and so will the induced N @
magnetosphere of the planet. BN
When anti-parallel magnetic fields () 2 pact of CIRe )
from opposite sides of the CIRs
meet magnetic reconnection events g A ¥
could be initiated on the dayside. |
(©)

Ong et al., 1993, related
ionospheric clouds to IMF

(9)

rotations.

Similar to the comet-tail

disconnection ideas by Brandt and
Niedner, 1989.

Edberg et al., JGR, 2011



Average heavy ion flux [m*s”]

Effect of heliospheric current sheet

~—Before the polarity reversal
—After the polarity reversal

Crossings
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Vech et al., 2016 showed that
the escape rate decreases by a
factor of ~0.75 following a HCS
crossing.
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Titan

« 127 flybys by Cassini @
e Titan mostly located within magneopause
* Observed in magnetosheath or solar wind
during T32, T42, T85, T116 (T94, T97)
(e.g. Simon et al., 2010,2013; Edberg et (b)
al., 2015, Kabnovic et al., 2017)

A deformed bowshock
for the combined
Titan/Saturn system
observed and

) modelled (Bertucci et
al., 2015, Omidi et al.,
submitted)
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T85 magnetosheath excursion: result
of a CME impact

MP (red dashed)
BS (blue dashed)

BS 0.1-0.01 nPa
pressure (dark grey)
Cassini orbit (black)
Titan orbit (green)
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* MAG data: Titan in
the magnetosheath
during 2h45min prior
to the flyby.

* No CAPS particle
data

* Titan close to the
bow shock.

* Long-term (1 day)
rotation of IMF.
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CME impact during the T85 flyby

e Stereo-B solar wind data indicate a coronal mass
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' ' ' T 71 ejection (CME), 45 degrees off from Saturn direction.
1 *Simple radial propagation calculation: about 2143 days
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Extreme ionospheric peak densities
effect of increased particle precipitation?

o Edberg et al., (2013) GRL
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No observed increased solar X-rays or
solar EUV flux during T85 (from GOES and
NOAA) -> particle impact ionoisation a
likely explanation. A back-of-the-envelope
calculation of what fluxes are needed:

Effective dissociative recombination rate
a=6-10°cm?®s* (Vigren et al., 2012).
Density of 4310 cm3 at the peakimplies an
ionisation rate of P = aN_?=13 cm~s ™.
Excess production rate to enhance the
electron density by 500 cm™ above the
background is then 3 cm>3s!

1-3 keV protons required to reach 1000 km
Total column ion production rate is the
scale height (50 km) times the excess
production rate of 3 cm3s?, or 1.5 107
cm?s1. A 2 keV proton generates about
10-50 ions so a proton flux of 1 - 10°cm~?s*
is needed, which is a reasonable number,
especially taking into account a flux
increase due to the CME and perhaps even
the bow shock crossing (sorry for all the
text!).



Previous Titan magnetosheath encounters

T32 — Bertucci et al,,
2008, Garnier et al., 2009.
No enhanced electron
densities reported. ;‘
Only in the MS for 10 min T HM alﬂ :
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Electron counts

o bt s 4 during the flyby.

Time (UTj1 17:20 17:30 17:40 17:50 18:00 18:10
Alt. (km) 7467 4249 1621 1233 3538 6680




3500
3000
2500

Increased particle impact ionisation
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Kliore et al., 2011: high densities
during a few radio occultation
measurements. Increased particle
impact ionisation suggested
explanation.
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Solar cycle influence on the ionospheric
peak density
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Solar max ionospheric profiles
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* The peak density during
T83-T88 is clearly increased.
*TA, TB and T5 density are
also higher than average.

* TAand TB, T85 and T88 did
most likely not reach the
peak altitude.
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Titan: Edberg et al., 2013, JGR
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Mars: Girazian and Withers, 2013, GRL
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The subsolar peak
density could have been
> 6500 cm™ during the
previous solar max -
85-160% more than
ever measured during
the Cassini mission.
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F, (107 W m™)
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* According to Chapman theory
the density N, oc F ¥, where F, is
the ionising flux and k=0.5.

* Several assumptions violated:
plane stratified ionosphere,
monochromatic radiation, single
neutral, a single ion species
absorbing the flux, isothermal
ionosphere.

* Still, our result of k=0.54 is very
similar to theory, and very
similar to results from the
ionosphere of Mars (k=0.47)
(Girazian and Withers, 2013)



Summary

Mars and Venus loose more plasma during
stormy space weather (CIR/CME impacts) -
from case studies and statistical studies

Heliospheric current sheet crossings seems to
reduce the outflow (at Venus)

lonospheric density of Titan increases during a
CME impact

Solar cycle variations affect the ionosphere of
Titan in agreement with theory



